
A FRAMEWORK FOR THE
MEASUREMENT OF SIMULATED

BEHAVIOR PERFORMANCE

THESIS

Christopher M. Cooper, 2d Lt, USAF

AFIT/GCE/ENG/11-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT/GCE/ENG/11-02

A FRAMEWORK FOR THE

MEASUREMENT OF SIMULATED

BEHAVIOR PERFORMANCE

THESIS

Presented to the Faculty

Department of Electrical & Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Christopher M. Cooper, B.S.E.E., B.S.C.E.

2d Lt, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED





AFIT/GCE/ENG/11-02

Abstract

Recent development in video games, simulation, training, and robotics has seen

a push for greater visual and behavioral realism. High fidelity models in the educa-

tion, training, and simulation communities provide information used for strategic and

tactical decisions. As the reliance on these models rises, the importance of accuracy

and credibility of simulated behavior increases. Credibility is typically established

through verification and validation techniques.

Increased interest exists in further developing behavior realism. Thus far, the

development of validation processes for behavioral models remains unclear. With

accurate simulated real world behavior a major goal, this research investigates the

validation problem and provides a process for quantifying behavioral correctness.

We design a representation of behavior based on kinematic features capturable from

persistent sensors and develop a domain independent classification framework for

measuring behavior replication correctness. We demonstrate a proof of concept func-

tionality through correct behavior comparison and evaluation of sample simulated

behaviors. This provides a means to improve trainee skill transfer through simulation

with correct behavior.

iv



Acknowledgements

Thanks goes to my advisor, Lt Col Borghetti, the agent of change who gave

expertise and advice on more than just school and thesis work and through more than

just words. Second, to my committee members, Maj Mendenhall and Dr. Lamont,

wise gurus in their own right, who provided new direction and feedback when needed.

I would also like to thank Capt Chapin for his statistically significant advice and

clarification.

Further, thanks is owed to peers and fellow students (Bryon Fryer et al.), who

gave assistance through both the good and bad and who were “brother’s in arms”

against the onslaught of work.

The author would like to thank the Air Force Research Laboratory’s 711th Human

Performance Wing for their sponsorship of this research and Numerica Corporation

for their technical assistance.

In everything Soli Deo Gloria,

Christopher M. Cooper

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Related Work to Measuring Simulated Behavior Correctness . . . . . . . . . . . . . . 5

2.1 Domain Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Towards Behavior Realism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Verification & Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Measures of Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Models in Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III. Methodology of Behavior Representation and Framework
Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Problem Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Agent Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Features Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Evaluation System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Learning and Performance Evaluation Phases . . . . . . . . . . . . . . . . 27
3.3.4 System Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Baseline Establishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Behavior Difference Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



Page

3.4.3 Clustering Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV. Experimental Results and Analysis of the Behavior
Correctness Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Baseline Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Behavior Difference Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Feature Selection Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 System Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 Selecting Better Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Generating Better Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A. Overview of Sample Standard Validation Techniques . . . . . . . . . . . . . . . . . . . . 57

B. VBS2 Agent Combat Stance Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C. Alternate Preliminary Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



List of Figures

Figure Page

1 VBS2 scenario setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Agent movement directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Evaluation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Characterization data partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Baseline confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Behavior difference confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Behavior difference non-covers by class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Behavior difference non-covers by parameter setting . . . . . . . . . . . . . . . . . 45

10 Behavior difference feature selection (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11 Population clustering feature selection (5) . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Behavior difference feature selection (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Population clustering feature selection (10) . . . . . . . . . . . . . . . . . . . . . . . . . 49

14 Alternate confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

15 Alternate non-covers by class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

16 Alternate non-covers by parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



List of Tables

Table Page

1 Data set definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Sample Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Attribute settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Framework parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Modification experiment parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Example Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Validation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



A FRAMEWORK FOR THE

MEASUREMENT OF SIMULATED

BEHAVIOR PERFORMANCE

I. Introduction

1.1 Overview

Since the advent of PongTM to current state of the art, Artificial Intelligence (AI)

in video games has increased in complexity. AI can be used to create rule-based agents

that perceive and act in an environment [43]. Opponent forces remain a particular

application focus of agent development.

Increased realism in opponent behavior provides a richer and more true-to-life

experience. Imagine a modern First Person Shooter (FPS) war game where the

characters display robotic movement and turn sharp corners while running. This

decreases the realism and overall enjoyment of FPS games.

Military training simulators can benefit from realistic agent behavior. Greater

realism in opponent and teammate behavior enables higher fidelity training. Realistic

military training, such as the Red Flag exercises [3] better prepares the warfighter

for potential real world situations. Alternately, trainees become discouraged from

practicing proven tactics that are ineffective in the simulator (lower fidelity).

There exists much research on creating AI agents which exhibit realistic human

behavior. Recent work includes cognitive, emotional, and psychological factors. As

agent models continue to develop towards realism, the growing void of behavior vali-

dation must be addressed.

1



1.2 Problem Statement

Measuring how well current behavior models perform the desired behavior remains

an open problem. One common practice is to obtain user feedback about the believ-

ability of the agent behavior, but this is subjective by definition. Goerger investigates

several inherent biases in human evaluation of behavior models and possible ways to

address them [20]. Furthermore, this type of validation incurs the costs of human

expertise and performance may be biased by the graphics platform used to display

the agent behavior.

A representation of behavior and a framework to evaluate the performance of

agent behavior are required to determine if behavior produced by a model is indis-

tinguishable from the desired behavior.

1.3 Approach

The contribution provided by this research is two-fold. First, we provide a method

of capturing different behaviors. Second, we give a machine learning framework for

determining a quantitative measure of behavior replication correctness.

We design a representation of behavior based on kinematic features capturable

from persistent sensors. These revolve around spatial (x, y, and z) positions over

time and subsequent statistical derivations (e.g., average x, number of position move-

ments). We represent an observed period of time as a single vector of characteristic

features.

We also propose a machine learning/pattern recognition framework which con-

sists of three components. The clustering component groups similar data and adds

a feature to the data vector based on cluster assignment. The feature selection com-

ponent selects a subset of features with the intent of improving classification. The

classification component learns the patterns and predicts the behavior class of data

2



samples.

This design describes a flexible framework composed of pattern recognition com-

ponents. It composes a framework as each of the components may be instantiated

with algorithms tailored to the specific problem domain, but the general process stays

the same. In addition, the whole process is driven by the domain data.

The framework executes in two main phases. The learning phase performs on

the (desired) target behavior. This phase runs through the framework in a typical

manner with a small portion reserved for evaluation. The performance evaluation

phase assigns samples to clusters based on previous learned groupings. The same

feature subset determined in the learning phase is used and the classifier only predicts

based on what it learned in the previous phase. Both the reserved portion and the

agent (current) behavior run through the performance evaluation phase with classifier

prediction accuracy determined. A confidence interval (CI) based on the difference

between their respective accuracies helps determine if the two data sets are different

enough to be distinct and therefore not exhibiting the same behavior.

We study the behavior of a single agent of interest. A military training simulator,

Virtual Battle Space 2 (VBS2), serves as the platform for generating agent behavior

data. We capture the kinematic features of the agent. An urban setting provides

an environment of interest to the military and lends towards interesting behavioral

situations.

We tested the response of the system under a number of conditions and achieved

favorable results. With equivalent behavior from the same population, the system

achieved a 100% rate of coverage by CI, indicating the behaviors are indistinguishable.

When the behavior under test was modified (25% data relabeled) from the desired,

the CI coverage rate dropped to at least 5 times worse than expected by chance. This

correctly indicates a difference in behaviors.

3



This proof-of-concept testing demonstrates an objective data-driven method to

measure behavior correctness. It utilizes both the behavior representation and an

implementation of the pattern recognition framework.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 is a literature review of

related work, covering current techniques for the evaluation of the realism of different

behavior models. Chapter 3 describes the stages of the framework and discusses

evaluation and verification processes. Chapter 4 explores different test cases. Chapter

5 explains the impact of the research and outlines potential areas of future progress.

4



II. Related Work to Measuring Simulated Behavior

Correctness

Throughout this section, we view select behaviors and their model development,

cover the need to verify and validate the models, and investigate the different perfor-

mance measures used. This flows through the process of behavior representation and

evaluation. It highlights the need for further research in the area of behavior model

evaluation. We begin by discussing some mappings of behavior to the classification

domain.

2.1 Domain Mapping

The Random House Dictionary defines behavior as “observable activity in a human

or animal, the aggregate of responses to internal and external stimuli,” [4] which

we use as a basis for the discussion of human behavior models. Motion covers a

large portion of interesting actions observable through sensors. A set of measured

properties of kinematic characteristics can represent a behavior. Organization of, or

feature extraction from, motion data provide an avenue for the application of machine

learning tools to the problem domain.

Proper organization of the motion data enables efficient search through deter-

mined motion categories. Lee et al. use a scheme based on clusters to generate real

time agent motion sequences [35]. They pull sequence parts from a motion database

recorded when a human subject moves through an environment. Lee and Lee focus

on interactive response to user commands, which requires selection of appropriate

behavior sequences [36].

A similar technique to building agent behaviors, behavioral cloning [10], replicates

patterns of behavior observed in humans or other agents. Expert performance is

5



recorded, and machine learning algorithms help create a model which produces agent

behaviors. Abbott takes professional soccer team recordings to aid Robocup team

tactics development, measuring success through goal tracking [5]. With interest in

validating simulation against reality, the observations must follow suit.

Within behavior, [61] focuses on tactical behavior drawn from log file kinematic

data. They present a method to detect representative feature trajectories to analyze

Robocup players during game play. Riley and Veloso focus more on ball position to

classify behaviors in games based on ongoing observations [42]. Hidden Markov Mod-

els capture the different behaviors through state features in [23]. The development of

systems which can adapt during the course of games plays an important step in the

long term goal of developing agents with more human-like behaviors.

2.2 Towards Behavior Realism

Computer agents require more than just visual realism for greater human likeness.

A rule-based agent can look real, but come off as fake when performing actions.

Groom et al. study the effects of realistic physical behavior on people’s response to

conversational agents [22]. Their study suggests that behavioral realism may play an

important role in human responses to agents. The work by Kopp et al. investigates

the effect of accompanying appropriate nonverbal behaviors on human interaction [33].

One of the current major challenges is to increase the realism of agents’ cogni-

tion and behavior. Any such advances affect the education, training, Department

of Defense (DoD), and commercial communities. Each depends on advances to im-

prove areas such as training realism, cost reduction, analysis and acquisition of new

systems. High fidelity Models and Simulations (M&S) highlight differences between

systems [28], provide further insights into trade offs [15], increase skill transferability,

and provide opportunities to explore strategies and tactics[21, 51]. The ability to

6



train under near-realistic conditions is further enhanced by agents whose response

alters under different variables such as fatigue, leadership, and native culture [48]

The credibility and validity of the M&S is of the utmost importance. Illgen et al.

argues that this increased capability also comes with a risk of tougher or even impos-

sible validation conditions [28]. Although no model is perfect, the consensus indicates

a great need for standardized means of verification and validation for M&S [13, 54].

Demonstrating validity (experimental evaluation) poses several difficulties. En-

vironment, input, and output differences along with unknown internal states make

it difficult to run simulations and compare to past events [20]. Models derived in

a particular setting need to be revalidated when applied to a different context. Sil-

verman indicates possible issues with validation of multiple factors as research tends

to focus on factors independently [48]. In addition, the nonlinear nature of human

cognition [21], the large set of interdependent variables, and lack of validated data

confounds the problem [2].

Due to the nondeterministic nature of human behavior, the authors in [21] as-

sume validation becomes contingent on subject matter expert judgments as typically

acquired using face validation, a “face value” informal evaluation performed by a

human to determine major flaws. They frame their study around determining the

strengths and weaknesses of such an approach. Empirical studies help them ascertain

any critical issues and ways to mitigate and enrich the validation.

Illgen et al. recognizes the lack of uniform/standard approaches for verification

and validation of M&S for human behavior [28]. They overview standard validation

techniques and detail the appropriate times to use each throughout the development

process. A summary is given in Table 7 in Appendix A.

Integral to the development of high fidelity simulated human behavior is the pro-

cess of determining the correct functionality of the behavior. Verification and valida-

7



tion typically form a basis for such processes.

2.3 Verification & Validation

Verification and validation are used to bring credibility to systems. With training

simulations used for the development of critical skills, the need for high credibil-

ity becomes paramount. As different domains have specific associtaed meanings to

verification and validation, we must define them within the given context.

2.3.1 Definitions.

Verification of models as defined by Sargent is “ensuring that the computer pro-

gram of the computerized model and its implementation are correct” [45]. Sufficient

development of the confidence of users in the model and information derived thereof

that they are willing to use it defines model credibility. Further definitions of concep-

tual model validity, computerized model verification, operational validity, and data

validity can be found in [45]. Illgen et al. provides a summary of different validation

techniques and their suitable uses [28].

With increased model use for problem solving and decision making, the concern

focuses on the correctness of the model and its results. Model verification and val-

idation address this concern. Validation can be defined as “substantiation that a

computerized model within its domain of applicability possesses a satisfactory range

of accuracy consistent with the intended application of the model” [46]. The goals of

the validation process make up a key aspect of validation.

A simulation model represents an approximation to an actual system. Models

may be valid under one set of conditions and invalid in others. It is considered valid

for set conditions if its accuracy stays within tolerance as specified by the user [45].

The model should be validated relative to the criteria used for decision making [28].

8



Typically, tests and evaluations are conducted until sufficient confidence is obtained

to consider the model valid for its intended application [44].

2.3.2 Validation Process.

Typically, one of three main approaches is used for the validation processes. The

most common practice, face validation, typically requires the development team to

make a subjective decision based on test and evaluation results. An independent

third party can perform the same role. With a scoring method, the model receives

subjective scores/weights for various aspects and must pass a predetermined threshold

to be validated, but is used infrequently in practice [6, 19]. The following list provides

a brief overview of different validation techniques. For a fuller description see [45].

• Animation - visually see model exhibit desired behavior

• Comparison to other models - same input and compare output

• Event - specific events compared to real system reaction for same events

• Face - human judge determine if reasonable performance or not

• Historical Data - part of data used to build system, part to test

• Parameter Variability/Sensitivity Analysis - vary internal parameters to deter-

mine effect

Operational validity relates to the model’s output behavior exhibiting required

accuracy. The operational validity is highly affected by the observability (possible to

collect data on the operational behavior) of the system. Graphs of behavior data,

confidence intervals, and hypothesis tests are tools used for comparing input-output

relationships.

9



Typical graphs include: histograms, box plots, and scatter plots. The confidence

level, sample size, and variances of the response variables determine the length and

size of confidence intervals. A trade off must be made between sample sizes, confidence

levels, and estimates of the sizes of model range accuracy. The third method tests the

stated hypotheses about the outcome. An Operating Characteristic Curve (OCC) [31]

helps examine the probability of acceptance of a model being valid.

2.3.3 Measures of Performance.

One important aspect for any model is the ability to measure the performance

of the system. This allows someone to tell how well the model performs, compare

multiple methods or demonstrate that the proposed method meets certain criteria.

To date, the vast majority of measures deal with model to machine capability. This

comes in terms of frame rate either with or without rendering [24, 41]. Another

common metric includes the number of sustainable agents, which often relates to a

sustainable frame rate [1]. These measures show particular relevancy to real-time

applications such as [39]. Frame rate also serves as an indicator to the efficiency [56]

and scalability of the model [47].

Frame rate may be skewed with pre-computation or different rendering engines.

Sung et al. measures the average memory use of agents in addition to frame rate

calculations [55]. Time and position measurements determine how well group move-

ments adapt to group course changes in [12]. Many proposed models measure success

along the lines of the creation of a feasible solution. This results in a binary decision:

does it work or not. This can be extended to a series of goals as seen in [40].

Other less deterministic methods of measurement have been employed as well.

Some claim typical actions demonstrated [47], intuitively accepted scenarios shown [11]

or realistic movement consistent with observations [40]. Silverman utilizes another

10



subjective measure, the satisfaction of human judges such as sponsors or tech repre-

sentatives [49]. Although the claims may be true, the subjective nature and the lack

of quantitative measurements contribute to skepticism when under scrutiny. Thal-

mann proposes autonomy, interaction and degree of presence as three metrics to judge

a virtual reality system absent of any means of measurement [57]. This leaves the

development of solid metrics for the measurement of performance of the behavioral

fidelity a key area to consider.

2.3.4 Models in Application.

Silverman performs some validation of a set of Performance Moderator Functions

(PMFs), theories and models of behavior (crowd, stress, emotion, cognitive, etc).

According to the author, verification of the PMF ascertains that behavior is [48]:

consistent with respect to individual PMFs; complete with respect to the set of all

PMFs being implemented; and somehow coherent with respect to their own goals,

standards, and preferences in the scenario.

On the other hand, possible validation options suggested include Subject Matter

Expert (SME) comparison of outcomes to historical results, quantification of events

and comparison to real events and outcomes, or to combine both a qualitative and

quantitative approach.

For the evaluation of a rule-based “dialog agent”, Walker et al. provides a list

of metrics used throughout the community. Lists of both objective and subjective

metrics follow [59].

Objective metrics (numerical values):

• Percentage of correct answers with respect to a set of reference answers

• Percentage of successful transactions or completed tasks

• Number of turns or utterances

11



• Dialog time or task completion time

• Mean user response time

• Mean system response time

• Percentage of diagnostic error messages

• Percentage of “non-trivial” (more than one word) utterances

• Mean length of “non-trivial” utterances

Subjective metrics:

• Percentage of implicit recovery utterances (where the system uses dialog context

to recover from errors of partial recognition or understanding)

• Percentage of explicit recovery utterances

• Percentage of contextually appropriate system utterances

• Cooperativity

• Percentage of correct and partially correct answers

• Percentage of appropriate and inappropriate system directive and diagnostic

utterances

• User satisfaction (users perceptions about the usability of a system, usually

assessed with multiple choice questionnaires that ask users to rank the systems

performance on a range of usability features according to a scale of potential

assessments)

Several limitations exist in regards to all these metrics. The use of reference an-

swers prevents comparison between systems that use different dialog strategies for the

12



same task. Any existing interdependencies between metrics are not well understood.

Certain metrics prevent combination or trade offs [18] and complicate generaliza-

tions [32]. Instead they propose the derivation of a combined performance metric as

a weighted linear combination of dialog costs and task-based success measure [59].

2.3.4.1 Human Evaluation of Agents.

The most common type of agent human behavior model validation found in the

literature is face validation. This technique determines if the model seems reason-

able to people who are knowledgeable about the system. It provides a quick human

assessment of the look and feel of the results. Facial validation provides qualitative as-

sessment and identifies gross problems and general trends and therefore is insufficient

for any robust validation [28].

Kopp et al. evaluate a conversational agent’s ability to exhibit coherent, fluent

interaction which resemble human-human dialogs [33]. They perform an empirical

evaluation based on logfiles of interactions over a period of weeks. Qualitative human

analysis breaks the conversations into categories with statistical analysis performed

afterward. This relies on informal subjective validation techniques.

In order to evaluate the effectiveness of an embodied agent, Groom et al. utilize

human survey feedback [22]. Simple control of the level of realism supports testing

across three conjectures of agent realism: Realism Maximization, Uncanny Valley,

and Consistency. The realism differences are limited to the accompaniment of non-

verbal and lip sync (a binary determination of more realistic or not between two

settings) [22]. Survey methods inherently have subjective human determination.

The work of Berry et al. aim to empirically evaluate an embodied conversation

agent GRETA [7]. They measure subjective rating of the quality of arguments and the

likelihood that people would follow the given advice among other factors through pre

13



and post test questionnaires. Adjustment of the consistency of emotional and facial

expressions with the message controlled the level of realism presented in GRETA [7].

Evaluation of human motion performed by an agent in Lee et al. takes the form

of silhouette comparison from motion captures [35]. The easiest and least formal

method of comparison entails a simple visual check by a human. The work does not

describe the comparison method used. Lee and Lee perform a visual check to validate

the desired behavior of their approach [36].

The RoboCup team created by Abbott uses human motion data as a basis for

tactics during game play [5]. A 10-fold cross-validation measures performance of

the prediction accuracy of their classifier. Goal difference becomes their metric of

choice for evaluating performance in the domain. However, neither directly measure

the performance of the behavior in terms of replicating the tactics performed by the

human team.

Collaboration between the Tracer Tool and the Temporal Trace Language (TTL)

checker provides an integrated approach for the analysis and verification of behaviors

from an agent-based system. Despite the development of various tools for model

checking [14], software comprehension remains a time consuming and heavily manual

process. The TTL checker automatically checks the behavioral properties against

logs of the system (like a checklist). System execution observations from patterns of

agent behavior are used to detect anomalous behavior [9].

Goerger et al. contend that validation of simulations with human behavior ne-

cessitate Subject Matter Expert (SME) facial validation which may be improved

upon [21]. They argue that computability theory indicates the need to use SMEs to

assess models of human behavior due to the non-deterministic behavior. The research

provides a means of identifying SME bias that can be mitigated through training or

human performance evaluation techniques [21].

14



2.3.4.2 Alternate Agent Evaluation.

PARADISE (PARAdigm for DIalogue System Evaluation) provides a general

framework for evaluating and comparing the performance of spoken dialog agents.

A decision-theoretic framework specifies the relative contribution of factors to overall

performance. This is made up of a weighted function of task-based success measure

and dialog-based cost measures. How well the agent and user achieve information re-

quirements of the task by the end of the dialog determine task success. Walker et al.

give the formulation of and equations for estimation. This equates to the performance

function that takes into account the definition of success and costs of the described

model [59]. They provide the following methodology for deriving the performance

measure:

1. Definition of a task and a set of scenarios;

2. Specification of the Attribute Value Matrix (AVM) task representation;

3. Experiments with alternate dialog agents for the task;

4. Calculation of user satisfaction using surveys;

5. Calculation of task success using κ (The Kappa coefficient - calculated from

confusion matrix of agent performance of a task);

6. Calculation of dialog cost using efficiency and qualitative measures;

7. Estimation of a performance function using linear regression and values for user

satisfaction, κ and dialog costs;

8. Application of the performance function to experimental performance data to

compare performance differences among agent strategies, tasks, or other exper-

imental variables;

15



9. Comparison with other agents/tasks to determine which factors generalize;

10. Refinement of the performance model.

A possible limitation is that PARADISE currently models performance as a linear

combination of task success and dialog costs.

A different method involves the use of case studies. Case studies involving civil

unrest and asymmetric warfare examine verification, validation, and interoperability

of PMFs with existing simulators, emulators, and AI components. Crowd litera-

ture [26, 38] indicates patterns of looting associated with young unemployed males

in chaotic situations. Being able to reproduce these behaviors through emerging con-

ditions indicates at least surface correspondence and may bolster confidence in the

correct functioning of the PMF collection [48].

2.4 Summary of Related Work

In [50], the author found a general disparity between major components; the

high level cognition realm tends to ignore subjectivity and situation dependency,

whereas reactive systems encompass the majority of functionality research; the lack

of integration/implementation work of behavioral researchers coupled with the dearth

of developer behavioral knowledge; ability to validate useful behavior models (mixing

of multiple aspects in varying contexts).

Further validation of techniques used or incorporated into models is needed. Stud-

ies examining the affective relationship between areas of human behavior are lacking.

A general lack of knowledge about the interrelation dynamics and effects between

psychology, emotional, social and cognitive aspects of human behavior exists. The

methods and means to measure the degree to which the models accurately capture

and portray human behavior are almost nonexistent.

16



Such voids evident in the simulated human behavior realm need to be addressed.

In order to evaluate a behavior, first one must determine a representation thereof. A

measure which does not totally or mostly rely on subjective judgments could provide

a great boon to the process of validation in the simulated agent behavior domain.

Our development of a representation and instantiation of a behavior correctness com-

parison framework are detailed in Chapter III.

17



III. Methodology of Behavior Representation and

Framework Design

With limited validation demonstrated and mostly subjective methods used through-

out the simulated human behavior literature, we seek to develop a data driven ap-

proach to measuring and validating behavior correctness. First, we walk through the

process of mapping behaviors to a feature domain and provide details for application

in the proof-of-concept tests. We describe the generic framework and then the specific

instantiation we use for the application experiments.

3.1 Problem Development

Current research in the development of AI agent human behavior models needs

a good means to measure a model’s ability to exhibit the desired behavior(s). Face

validation, a commonly used method, falls short. Face validation is an informal review

using expert opinion to determine if the model behaves in a reasonable manner [28].

Issues include: a subjective nature, human expertise cost and limitations, and the

performance being tied to the graphics platform (which should be independent of the

behavior model). Subjective evaluation brings with it the potential of a plethora of

biases [20]. These are often difficult to identify and may cause a large variance in

evaluation metric values.

We evaluate how well the behavior of a single agent in an urban environment

simulation matches a desired/known behavior. We capture a representation of the

behavior through kinematic features. The premise is to capture observations of the

behavior that can be obtained from a persistent sensor such as an aerial or stationary

camera.

The Random House dictionary defines behavior as “manner of behaving or acting,

18



or observable activity in a human or animal” [4]. We focus on observable activity, or

actions and movements made in an environment. We look at the pattern of movement

through an environment as a math (logical) representation of behavior. A set of

observed and derived kinematic features serve as an approximation of the behavior.

Representing behavior as a set of features enables the application of pattern recog-

nition/machine learning tools to the problem. The tools learn and measure similar-

ities and differences between samples of the data in feature space. Given data from

a desired behavior and data of an agent attempting to replicate the behavior, the

performance of the agent data is determined through such a comparison.

3.2 Application Scenario

3.2.1 Data Partitioning.

Evaluation of behaviors with the proposed framework, as defined in Section 3.3.1,

necessitates two different sets of data. The first serves as an exemplar of the behavior

desired to exhibit (e.g., captured behavior of a person in the real world) and the

second being data from a behavioral model (e.g., agent simulation of that person).

However, we do not have readily available matching sets of human and agent data

with the same behavior types. Therefore, we use an agent in a simulation to generate

data for both data sets.

The scenario described in Section 3.2.3 provides the source of the data. A ran-

domly selected portion of the source data represents the agent behavior data (here-

after behavior under test data) and the remaining portion represents the desired

behavior standard to emulate (hereafter model data). Table 1 details our data set

naming convention.

A single source provides innate benefits. This removes the possibility of unknown

influence due to additional factors, such as demographics, environment, simulation

19



Table 1. Data naming convention and definitions.

Name Description
source A data set which provides the

data for either model, behavior
under test, or both.

model Data of the exemplar behavior(s).
training The (main) portion of the model

data set used to train the evalua-
tion system on the patterns of the
behavior(s).

test A randomly selected portion of
the model data set used to deter-
mine the accuracy of the evalua-
tion system on the model data.

behavior under test Data of the agent behavior(s) to
evaluate.

platform, and behavior interaction. A comparison of samples from the same popula-

tion provides a general baseline for the performance of the system on same behavior

data. Besides elimination of outside influences, the same source population allows for

control of distribution changes.

A partial modification of the distribution for the behavior under test data

provides a method to test that the framework correctly identifies when the data sets

differ enough to be considered exhibiting different behaviors. We modify the data by

changing the class label of a randomly chosen portion of each behavior class. This

in essence changes the distribution of the data. Data points with modified labels

are likely to be “misclassified” and therefore lower the accuracy for the behavior

under test data, in turn raising the difference value and length/size of the confidence

interval.

20



3.2.2 Agent Behaviors.

To evaluate the concept, a set of behaviors are needed. VBS2 provides a set of

combat stances which are described in detail in the Virtual Battle Space 2 Virtual

Training Kit (VBS2 VTK) Manual [29] with a relative list given in Appendix B. These

behavior settings define the manner in which an agent reacts to its environment and

include the following five types: Careless, Safe, Aware, Combat, and Stealth. Each

combat type forms a different behavior class. These serve as the different behaviors

for comparison and performance measure.

For the simulated scenario, each agent was given the same starting point and

destination. The only difference between agent types was the setting of their combat

stance.

In order to trigger the reactive combat behaviors unique to each agent type, we

placed two small groupings of forces on opposite sides of a conflict as shown in Figure 1

by square and circle arrow icons. Each agent being classified was made a member

of one of the combat forces. We simulate ten runs of each agent behavior type for a

total of fifty data logs.

It is unlikely that real world analyst or a trainee would have visibility of the entire

lifetime of any one target of interest or Computer Generated (CG) agent. It is much

more likely that observations would be limited to a relatively short period of time.

Therefore, we divided the agent trails into smaller overlapping/sliding time windows.

Smaller window lengths decrease the number of different values a feature could take

on, while simultaneously increasing the number of samples available for training and

testing.

21



Figure 1. Shows the scenario setup. The “as-the-crow-flies” path runs from the circle
in the SE corner to the NW above the group of circle civilians. Opposing forces (East
and West) are indicated by square and circle arrow icons.

22



3.2.3 Data Source.

The data used throughout experiments and characterization of the system comes

from VBS2 VTK simulations. The US Military uses VBS2 VTK, a simulated battle

space training environment, for realistic and immersive training scenarios. It is also

used for developing and visualizing combat events, search and rescue operations, and

humanitarian efforts unfolding in the simulated domain.

Our virtual environment is a recreation of the Ohio State University campus.

Terrain and building placement is built as a combination effort from Light Detection

and Ranging (LIDAR) data [52] and Geographic Information System (GIS) data

from the school [30]. We chose this map because it features an urban environment

and approximately flat terrain. Agents moving in this environment are affected by

the buildings and roads.

In order to retrieve data from simulated scenarios we use a VBS2 data logger:

a VBS2 plug-in that interfaces with the simulation environment and records desired

simulation attributes to a log file. For our experiment, the data logger captured the

3-D coordinate system location (East, North, Up) in meters, orientation (degrees

counterclockwise from North), and agent ID of all agents within the simulation at a

sampling rate of 1 Hz. Table 2 shows the number of distinct vector samples calculated

for each behavior.

Table 2. Source data sample numbers by behavior class.

Combat Behavior Stance Number of Samples
Aware 415
Careless 141
Combat 333
Safe 358
Stealth 2214

23



Figure 2. Relative Movement Directions. Agent movement is quantized into one of
eight key directions.

3.2.4 Features Representation.

In order to use the data gathered for classification purposes, we collected all of the

position and orientation data for the entire path each agent took, then represented

each agent’s path as a vector: a single point in multidimensional space (one point

represents the entire path the agent took). To capture the essential information about

the behavior of each agent, we captured and derived 48 features for each path.

We built the features around positions over time and derivations to distinguish

possible behavior types. These features included average location, average deviation

from the “as the crow flies” straight-line path, directional movements quantized into

octants, and totals and averages of positions. Figure 1 shows the straight-line path

from the circle in the lower right up to the end location in the NW, and Figure 2

shows the octant splits.

The following list enumerates the feature vector:

1. Goal completion time

2. Average E Location (East)

3. Average N Location (North)

4. Average U Location (Up)

5. Average O (Orientation)

6. Variance E Location

7. Variance N Location

8. Variance U Location

24



9. Variance O

10. Total E change

11. Total N change

12. Total U change

13. Total O change

14. Total N moves

15. Total NE moves

16. Total E moves

17. Total W moves

18. Total NW moves

19. Total S moves

20. Total SE moves

21. Total SW moves

22. Total pivot in place

23. Total standing still

24. Average E change

25. Average N change

26. Average U change

27. Average O change

28. Total moves made

29. Total deviation

30. Average deviation

31. Total N moves / total moves made

32. Total NE moves / total moves made

33. Total E moves / total moves made

34. Total W moves / total moves made

35. Total NW moves / total moves

made

36. Total S moves / total moves made

37. Total SE moves / total moves made

38. Total SW moves / total moves made

39. Total N moves / sample count

40. Total NE moves / sample count

41. Total E moves / sample count

42. Total W moves / sample count

43. Total NW moves / sample count

44. Total S moves / sample count

45. Total SE moves / sample count

46. Total SW moves / sample count

47. Total pivot in place / sample count

48. Total standing still / sample count

Note: a move is defined as a change in

coordinate position from one time step to

the next.

25



3.3 Solution Approach

Behavior comparison forms the major premise behind our framework. Determin-

istic pattern recognition algorithms give the same output provided the same input.

It should follow then, that similar data produces similar results on the same set of

deterministic algorithms. Therefore, we assume that the accuracies AM and ABUT

will be similar when the behavior distributions of the model and behavior under

test data are similar. We compare these two behaviors by taking the difference of

their respective accuracies.

3.3.1 Framework.

The proposed solution incorporates three major components and two main phases.

Figure 3 shows an overview of the framework. Clustering, feature selection, and

classification algorithms form the three components and are used in both the learning

and performance evaluation phases. The first two components feed into the third,

and we call the three together an evaluation system. Figure 4 shows component

interaction within the evaluation system.

The three components used are from the machine learning/pattern recognition

communities. Clustering performs unsupervised (without class labels) learning of the

natural groupings of the data. Feature selection picks some subset of the features

based on a given distance measure. A classifier performs supervised (given class

labels) learning of the data for the classification of unknown instances.

3.3.2 Evaluation System Components.

The clustering component runs first as it adds additional information for the

subsequent components. Groupings discerned by the clustering algorithm form an

additional feature added to each data point. Along with the features described earlier,

26



Figure 3. The Behavior Measure Framework where AM and ABUT are the classification
accuracies from the model and behavior under test data sets respectively.

this feature is submitted for consideration to the feature selection component.

We use feature selection to reduce the dimensionality of the classification prob-

lem. This reduces the number of samples required for training (from the “curse of

dimensionality” [16]), and reduces computation time. We use a distance filter search

for simplicity to choose the feature subset [27]. This evaluates each feature individ-

ually on a specified distance measure. Features receive a rank based on the distance

measure. The selected features are passed to the classification portion.

The classification component first determines the patterns of the behaviors in the

training data and then predicts the behavior class of novel data samples. We use the

accuracy of the predictions for comparing different data sets. This process requires

two different phases: a learning phase and a performance evaluation phase.

3.3.3 Learning and Performance Evaluation Phases.

The learning and performance evaluation phases execute sequentially and utilize

the same evaluation system. In the learning phase, the components train on the

training portion of the model data. After the learning phase completes, a small

27



Figure 4. Evaluation system elements. The learning phase processes the training data
and then the performance evaluation phase evaluates the test and behavior under test
data.

portion of the model data and the behavior under test data run through the

performance evaluation phase. Results are compared and an evaluation measure

formed.

The learning phase trains the evaluation system on the model data. First we set

aside a small random portion (hereafter test data) of the model data, which is not

trained on. The clustering component determines the groupings of the model data

and calculates the center of each cluster. Feature selection picks a subset of the best

features based on a given distance measure. The classifier learns the patterns of the

model data based on the selected features.

Figure 4 shows the data flow through both phases. The training data (d trainn)

processes through the evaluation system, where n is the number of initial features. We

add the cluster assignment (n+ 1)th feature and then select some subset of features

(≤ n+1). Once trained these form a evaluation rule which evaluates the test (d testn)

and behavior under test (d BUTn) data based on what learned previously. This

results in the accuracies AM and ABUT respectively.

The performance evaluation phase compares accuracy results from the evaluation

28



system to determine if a large enough distinction exists between the behaviors. Both

the test data and the behavior under test data process through the evaluation

system in the same manner. The clustering component assigns each data point to a

cluster based on closest center as determined in the learning phase. We use the same

feature subset selected in the learning phase. The classifier predicts the class label

(behavior) of each data point. The difference between accuracies of the predictions

of the test data and behavior under test data forms the basis of the performance

evaluation.

3.3.4 System Performance Evaluation.

The consistency of the evaluation system, in particular the classifier, enables a

direct comparison between the achieved accuracies. Deterministic algorithms produce

equivalent results between multiple runs on the same data. Given same or very similar

results on the same data, slightly different data produces slightly different results. A

large discrepancy in results indicates differences in the data sets.

A confidence interval of the mean accuracy difference helps determine if the be-

haviors are similar or not. We expect the mean of the accuracy differences to be

zero. A value outside the determined bounds indicates likelihood that the behavior

under test data does not exhibit the desired behavior.

With unknown behavior under test data and model data distributions we use

a nonparametric approach. Bootstrapping provides a simple nonparametric means

of repeated sampling to learn about the population[17]. Monte Carlo case resam-

pling satisfies the condition that bootstrap samples be independent and drawn in the

same manner [60]. However, the bootstrapping process is highly dependent on the

data. A poor population representation gets reflected in the bootstraps. Random

selection with replacement necessitates multiple resamples to adequately represent

29



the population.

A bootstrapping process generates the accuracy differences needed for the per-

centile confidence interval. Bootstrap samples are formed from the model and be-

havior under test data sets. We use Monte Carlo case resampling to build the

bootstraps, where data points randomly drawn with replacement equal to the data

size build each sample. The bootstrap samples run through both phases of the eval-

uation system. We calculate the mean accuracy difference across bootstrap samples

for each initial creation of the model data and behavior under test data sets.

The evaluation system accuracy provides an indirect parameter on the distribution

of the data. We do not know the distribution of the accuracies. Therefore, we use

a nonparametric approach, bootstrap percentile confidence intervals [17], to estimate

population parameters.

We determine the confidence interval from the bootstrap accuracy differences. A

simple bootstrap percentile calculation finds the bounds. A chosen confidence level

value of, (1−α) determines the percentile cutoffs of α
2

and (1− α
2
). We first order the

differences and then find the sample numbers corresponding to the desired percentiles.

Given B bootstrap samples, the cutoffs become B ∗ α
2

and B ∗ (1− α
2
) [17].

The bootstrap percentile confidence interval works independent of any distribution

parameters. This works well for the accuracies as we do not know the distribution.

However, this method of building confidence intervals is highly dependent on the data.

Any skew in the data affects the accuracy and from there the confidence interval.

We look for the confidence intervals to contain zero (1−α) percent of the time with

a low variance. We compare the confidence level to the actual percentage of confidence

intervals which contain zero. With actual distribution and variance unknown, we

investigate the variance in terms of the range of the confidence intervals.

30



3.4 Design of Experiments

The design of experiments focuses on the main objectives from the problem. They

serve to demonstrate a proof-of-concept and characterize an instantiation of the be-

havior evaluation framework and subsequently the behavior representation. This con-

stitutes tests in a positive and negative direction: accurately determining the same

behavior and accurately distinguishing different behaviors. In addition, we investigate

the value added of the clustering assignment.

3.4.1 Baseline Establishment.

This first experiment establishes a general variance/baseline for the confidence

interval. We use the same data source for both the model and behavior under

test data. This makes it a five class/behavior classification problem. Confidence

interval bounds show how tight the variance of the mean difference is and where

typically centered.

A secondary objective of the experiment examines system accuracy and consis-

tency. Variations in clustering and feature selection parameters affect the accuracy

of the evaluation system. A comparison of the mean accuracy differences (between

model and behavior under test data) across parameters highlights the impact of

accuracy on performance of the system.

For the baseline experiment, our goal is to show the following:

1. Mean accuracy difference (where D = AM − ABUT ) to be zero: µD = 0

2. Variation of C&F (clustering and feature selection parameters) does not affect

µD: Between parameter settings, ∆µD = 0, where ∆µD is the difference between

µD at different parameter settings.

A µD near zero indicates similar behavior distribution, whereas a value far from zero

31



indicates distinct behaviors. A ∆µD near zero between settings indicates insensitiv-

ity of the system to different parameter settings, whereas large values indicate the

existence of “good” parameter settings for the system (values where µD is relatively

near zero and spread is small).

The following portion describes our framework for this experiment. We list imple-

mentation details and explain the choices made. We also detail the list of parameters

designed over. Table 3 details the parameters associated with the source data, while

Table 4 shows a listing and description of framework parameters associated with the

experiments.

Table 3. Data set and agent attribute settings.

Attribute Setting Description
Data

window size 64 seconds The time range used
to calculate the fea-
ture vector.

partition size 0.10 The portion of the
source data randomly
selected to be the
behavior under test
data.

Agent
combat behavior Safe; Aware;

Careless;
Stealthy; Com-
bat

Determines the
agent’s behavior when
near opposing forces,
otherwise acts the
same.

First we divide the data by behavior class. Each class is then randomly divided

into 10 folds. The behavior under test data results from a single fold of each class.

The remaining 9 folds of each class form the model data population. Different folds

makeup each population selection and we group accuracies based on the population.

Figure 5 depicts the data decomposition.

We create bootstrap samples from each data set population. We select data points

32



Table 4. Framework parameter settings.

Parameter Setting Description
P 10; 20 The number of populations of

model and behavior under test to
run.

B 200 The number of bootstrap samples
to take.

M 0.0; 0.25 The amount of behavior under
test data to modify class IDs on.

ρ 0.10 The portion of model data ran-
domly selected to be the test
data.

(1− α) 0.95 Confidence level for building con-
fidence interval.

Evaluation System
F 5; 10; 15; 20; 25 The number of features to select

prior to classification.
C 5; 6; 7 The number of clusters for the

clustering algorithm to use.
dist Euclidean/l2 norm The type of distance measure to

use in the machine learning com-
ponents.

Figure 5. The initial data partitioning process, for characterization experiments, with
the 10 splits randomly chosen proportionally across all classes.

33



randomly drawn with replacement equal to the number of instances within each class.

We use 200 such samples to provide the data for accuracy calculations.

Each bootstrap sample from the model data processes through the learning phase.

We first divide the sample into training and test portions. This occurs in the same

manner as the initial population splits from the input file. The first fold or 10% from

each class becomes the test portion (unlike with the populations, the training and

test data sets are only drawn once from each source data set (bootstrap sample)).

The evaluation system trains on the training data. We later use the test data

to evaluate the prediction accuracy of the system. We use algorithms provided in

the Java Machine Learning Library (Java-ML) for each component of the evaluation

system [58].

The cluster algorithm decomposes the data into groupings of similar data. We

use the K-means algorithm as described by MacQueen in 1967 implemented in Java-

ML [37]. We chose this algorithm for its simplicity and the ability to specify the

number of clusters. We vary the number of clusters from 5 to 7. This determines the

cluster assignment of the training data.

We vary the number of clusters, to test the second goal. We choose five as the

base number as anything less than the number of classes guarantees that one or more

clusters contain data from more than one class. This remains possible with more

clusters, but is not guaranteed. Ideally, the data groups by class and at a minimum

creates as many clusters as there are classes. We choose seven as the max due to

computation limits and a pilot study indicating a relatively low sum of squared error

for seven clusters.

From the training data we calculate the center of each cluster (mean). The test

data gets assigned to a cluster based on the nearest mean in Euclidean distance. The

cluster assignments (for both the training and test data sets) become an additional

34



feature to each data point.

Next, the feature selection picks a subset of features. This uses a filter method for

simplicity and computation time. We use the Euclidean distance between classes to

rank each feature. The distance calculations come from the training data. The best

ranked features, selected in a greedy forward manner, become the feature subset. See

Java-ML documentation for further details on algorithm specifics [58]. We vary the

size of the subset from 5 to 25 in increments of 5.

We vary the number of features selected to test the second goal, which predicts that

the accuracy differences are insensitive to clustering and feature selection parameter

variation. We use an increment of five features selected to keep the computational

cost lower. As well, a noticeable accuracy difference is needed between parameter

settings to test the second goal and therefore, a greater number of features are added

(increment by 5). A pilot study of the data suggests that the accuracy gains by adding

additional features tapers off after 20-25 features. We chose 25 for the max as it uses

about half the features and potentially little to no benefit is gained by including more

features.

We chose a nearest mean classifier for its simplicity and deterministic results.

The classifier calculates the center (mean) of each class based on the data points in

the training data set. The classifier predicts behavior class by the nearest mean in

Euclidean distance.

The performance evaluation phase uses both the test data set and the behavior

under test samples. In this phase the evaluation system is not allowed to learn,

instead just using a evaluation rule. The nearest cluster mean in Euclidean distance

determines the cluster feature of each data point. We utilize the same subset de-

termined in the learning phase, and the classifier predicts the class ID based on the

nearest class mean in Euclidean distance.

35



In order to compare the behavior under test data to the model, we need to

determine its associated accuracy and the difference thereof between the two. We

calculate the accuracy of each behavior class and across all classes. The accuracy

comes from classifier predictions, with the across classes determined by the average

of the class accuracies. The confidence interval uses the differences in accuracies from

the bootstrap samples of each population draw as samples.

Due to the high dependency of bootstrapping on the data, we run the bootstraps

on multiple (10) behavior under test and model population instantiations. With

bootstrapping, the statistical “rule of thumb” calls for around 200-500 samples [34].

Due to computation time limitations, we run 200 bootstraps.

Common confidence interval values for α in the literature are 0.01, 0.05, and 0.10.

An α value of 0.05 provides us with a confidence level of 0.95. Removal of the bottom

and top extremes leaves the 2.5 to 97.5 percentiles to form the confidence interval.

After we order (small to large) the bootstrap sample differences, the 6th to 195th

become the confidence interval.

We compare confidence intervals across all parameter settings directly. The spread,

Dmax − Dmin, of the confidence intervals gives an indication of the spread of differ-

ences between the two data sets. A tight spread indicates a greater consistency of

accuracies between paired bootstrap samples, as desired. The higher the percent of

confidence intervals that actually encompass 0, the more likely we achieve the first

goal (µD = 0).

3.4.2 Behavior Difference Detection.

The second experiment tests the ability of the system to detect when the behavior

distributions differ. We use the same source for the model and behavior under

test data, but modify a proportion of the behavior labels on the behavior under

36



test data. The proportion provides an indication of how much the difference measure

reflects the level of difference between the behavior under test and model data.

We expect the mean accuracy difference to be nonzero. We expect a shift away from

zero due to lower prediction accuracy on the behavior under test data.

The experiment utilizes the same initial source data for the reasons described in

the baseline experiment. Alteration of behavior class labels, and therefore which data

points comprise a behavior, inherently changes the distribution of that behavior. The

isolation of outside factors allows direct comparison between the behavior distribution

modification and the resulting difference in accuracy. Modification of the data also

allows us to know and have control over the proportion of the data that is in fact

causing a different distribution.

Accuracy difference levels determined in the previous experiment serve as a base-

line for comparison. The change exhibited in the mean differences must exceed accept-

able spread/tolerance calculated for the baseline in order to be considered different

behaviors. We choose the proportion modified (25%) to balance between ensuring

enough behavior modification while keeping the majority of the behavior data the

same.

This experiment follows the same basic process outlined for the baseline experi-

ment. We initialize the model and behavior under test data populations in the

same manner from the same source data set. We randomly select a 25% proportion of

each class in the behavior under test data and change the class/behavior label to

a random different class. We seek to strike a balance between keeping the behaviors

similar but different enough to accurately distinguish. A random class is chosen as

certain class pairings may have areas of confusion in feature space. This would cause

the prediction to be correct while the class is actually wrong, thus masking the de-

sired change in behavior distibution through an increased accuracy. The rest remains

37



mostly the same as in the baseline experiment. We use results from the baseline

experiment to narrow the parameter settings to “good” ones.

In the same manner as the baseline experiment, we calculate the bootstrap per-

centile confidence intervals. Again, a value of α = 0.05 serves to determine the

interval bounds. We compare the spread and the percent zero coverage as described

in Section 3.4.1.

We compare the average differences (population) from this experiment to the base-

line. The absolute differences from the baseline indicate the ability of the system to

detect the behavior distribution differences. The confidence intervals provide insight

into the relative magnitude of differences and the likelihood of results.

The modification experiment runs 200 bootstrap iterations across 10 different

population samples for each parameter setting. We run the experiment across the

best parameter settings from the baseline experiment. The average differences and

percentile confidence intervals, as compared to zero and the baseline results, determine

the performance of the system. We expect a mean difference not equal to zero. The

modification is expected to produce results different enough to be outside random

chance.

1. Mean accuracy difference (D = AM − ABUT ) to be nonzero: µD 6= 0

2. Variation of C&F (clustering and feature selection parameters) does not affect

µD: Between parameter settings, ∆µD = 0, where ∆µD is the difference between

µD at different parameter settings.

We compare the coverage and spread of the confidence intervals to zero for all settings

to assess the goals.

38



3.4.3 Clustering Assignment.

The clustering algorithm used in the experiments costs the most in terms of com-

putation time. A simple test of value added by the cluster assignment determines

the need to run the algorithm throughout the bootstrapping process. This type of

experiment only determines the clustering usefulness for that particular data set.

By tracking the feature subset selected on the training data, we can determine if

value is added by the cluster assignment. The percent selected across bootstraps in-

dicates the average estimated distinguishability of the feature. If the feature selection

never picks the cluster assignment, then the clustering adds no value.

We run two different setups. One keeps the clustering inside bootstrap as during

normal operation. This examines what each bootstrap keys in on and how it is

affected by a skewed bootstrap sample. We compare this to another setup with the

clustering placed outside/before the bootstrap draw and learns directly on the model

data.

We track the features and their percent selected while focusing on the cluster

assignment (feature 49). These are compared for consistency and to determine the

important features for classification. We run both setups with the same parameter

settings as used for the behavior difference test.

These experiments serve as a proof of concept within the simulated agent behavior

domain and to characterize the performance of the system. They seek to demonstrate

a feasible method of calculating a quantitative measure of behavior correctness. We

run each experiment as described. We report and analyze the results of each in

Chapter 4. Conclusions from the results are drawn in Chapter 5.

39



IV. Experimental Results and Analysis of the Behavior

Correctness Framework

The baseline, modification, and feature selection experiments serve both as proof

of concept and characterize the performance of the framework. We set up these

experiments to run under near ideal data circumstances by drawing the model and

behavior under test data from the same source. This ensures that comparisons

are made between the same behavior distributions and focus on the actual behavior

instead of bias or environment differences.

4.1 Baseline Experiment

The baseline experiment ensures the system works when both behaviors are the

same. We draw both the model data and behavior under test data from the same

source to make sure both have similar behavior distributions. Section 3.4.1 provides

further details on the experiment process including the test goals.

The first goal establishes the ability of the applied framework to achieve similar

accuracies between the model and behavior under test data and the second goal

highlights the sensitivity of the framework to system parameter variation. We use

the parameter settings shown in Table 3 and Table 4, with M = 0 and P = 10.

Across all classes and across all parameter settings, we observe 100% coverage of

zero by the confidence intervals. Figure 6 depicts such a set of confidence intervals

from a single class at a single parameter setting. The 100% coverage rate exceeds the

expected rate of the confidence level, 95%, and therefore, we find insufficient evidence

against µD = 0.

The second goal examines the sensitivity of the framework to variation in the

number of clusters and the number of features selected. The consistent coverage of

40



Figure 6. A set of confidence intervals from the baseline experiment. Parameter setting
is listed as C-F

41



zero by the confidence intervals across all settings indicates a level of insensitivity.

This masks any small scale change occurring between parameter settings.

Examination of the point estimates and confidence intervals for each class across

parameter settings produced no discernible pattern strongly away from a mean of

zero. Any small trends seen were inconsistent across classes for any given variation of

parameters (e.g., across number of features selected for a given number of clusters).

Changes in parameters appeared to have little to no affect on sample estimates of the

population.

An alternate preliminary test displays greater spread in results than the base-

line experiment above. Determination of the average number of confidence intervals

not covering zero across all classes for a particular parameter setting indicates a

smaller range of settings with high coverage rates (≥ confidence level). This insight

is highlighted by Figure 16 in Appendix C. We used the indicated settings, fixing the

number of clusters at six and varying the features from five to twenty (C = 6 and

F = 5; 10; 15; 20) for the remainder of the experiments executed. Reduction of range

of features to vary over reduces execution time. Appendix C discusses the experiment

and associated results in more detail.

4.2 Behavior Difference Experiment

The behavior difference experiment ensures the system detects when behaviors

are similar, but distinct. We draw both the model data and behavior under test

data from the same source to make sure both have similar behavior distributions. We

relabel 25% of the behavior under test data to force a noticable difference between

the behavior distributions. Section 3.4.2 provides further details on the experiment

as well as the two test goals.

We limit the parameter values to those in Table 5. With a tighter parameter

42



range we are able to increase the number of population draws. This increases the

confidence in the overall accuracy of the derived measure. Figure 7 shows a set of

confidence intervals from the experiment.

Table 5. Modification framework parameter settings.

Parameter Setting Description
P 20 The number of populations of

model and behavior under test to
run.

B 200 The number of bootstrap samples
to take.

M 0.25 The amount of behavior under
test data to modify class IDs on.

ρ 0.10 The portion of model data ran-
domly selected to be the test
data.

(1− α) 0.95 Confidence level for building con-
fidence interval.

Evaluation System
F 5; 10; 15; 20 The number of features to select

prior to classification.
C 6 The number of clusters for the

clustering algorithm to use.
dist l2 norm The type of distance measure to

use in the machine learning com-
ponents.

We see a definite rise in non-covering (do not cover zero) confidence intervals across

classes and parameter settings. Figure 8 depicts the average percent of non-covers

by class with most of the classes averaging half or more of the confidence intervals

as non-covers (out of 20 (P )). The lowest average non-covers by class exceeds the

level expected of chance by more than 5 times. This gives a minimum of 0.2875−0.05
0.2875

or 82.6% confidence that the results are correct (not from chance).

Parameter average percent non-covers are depicted in Figure 9. The lowest average

percent of non-covers by parameter exceeds the expected level from chance as well.

The consistent upward shifting of the confidence intervals (greater (positive direction)

43



Figure 7. A set of confidence intervals from the behavior difference experiment. Pa-
rameter setting is listed as C-F

accuracy differences) further reinforces the first goal. With a confidence of 82.6-90.9%

across the different classes and 61.5-93.9% across parameter settings that the results

are not from chance, we do not find sufficient evidence to oppose a µD 6= 0.

The second goal examines the sensitivity of the framework to variation in the

number of clusters and the number of features selected. Unlike the baseline experi-

ment, the parameter variation shows a small confidence interval coverage difference

between settings. This indicates some degree of sensitivity to parameter spread.

The general trend exhibited by the point estimates and the confidence intervals is

a slight shift towards zero as the number of of features selected increases. However,

this is not true in all the cases, and a general rise in spread and mean happen between

five and ten features selected for a number of classes. In addition, the feature selection

is only examined for a single given number of clusters. These findings may be absent

44



Figure 8. The average percent of confidence intervals that do not cover 0 for each class,
across all parameter settings, in the behavior difference experiment.

Figure 9. The average percent of confidence intervals that do not cover 0 for each
parameter setting, across classes, in the behavior difference experiment.

45



or reversed for other cluster values.

4.3 Feature Selection Experiment

The third experiment evaluates the importance of features via selection percent-

age. In particular we wanted to determine the relative usefulness of the cluster as-

signment feature (49) and hence the clustering. The feature selection component

estimates the relative importance of each feature through ranking based on the l2

norm.

We compare selected features for when clustering is performed in each bootstrap

and on the actual model and behavior under test data sets prior to any bootstraps.

This serves to determine if the random draws of the bootstraps select the same features

as the behavior population level (outer cluster). We gathered feature selection data

from the modification experiment for the case with the clustering inside the bootstrap.

The same framework parameters are used for the outer clustering runs.

Figures 10 and 11 show the features selected and their associated percentage when

F = 5 for the bootstrap and outer clustering respectively. The corresponding features

selected are as follows:

2. Average E Location (East)

3. Average N Location (North)

4. Average U Location (Up)

5. Average O (Orientation)

28. Total moves made

49. Cluster Assignment

We depict the same for F = 10 in Figures 12 and 13. The corresponding features

follow:

2. Average E Location (East)

46



Figure 10. Percent selection of features with five selected during the behavior difference
experiment. No indication of order is indicated, just a selection percentage. Parameter
setting is listed as C-F

Figure 11. Percent selection of features with five selected during the population clus-
tering experiment. No indication of order is indicated, just a selection percentage.
Parameter setting is listed as C-F

47



Figure 12. Percent selection of features with ten selected during the behavior difference
experiment. No indication of order is indicated, just a selection percentage. Parameter
setting is listed as C-F

3. Average N Location (North)

4. Average U Location (Up)

5. Average O (Orientation)

19. Total S moves

28. Total moves made

36. Total S moves / total moves made

44. Total S moves / sample count

49. Cluster Assignment

9. Variance O

The general trend indicates consistent feature ranking and selection between boot-

strap iterations in both systems as well as between the two. With five features se-

lected, inside bootstrap selection favors the cluster assignment feature slightly more.

This is reversed in the cases with ten or more features selected. With a selection

percentage greater than 50% at the F = 10 and above settings demonstrate that the

clustering assignment does provide useful information.

48



Figure 13. Percent selection of features with ten selected during the population clus-
tering experiment. No indication of order is indicated, just a selection percentage.
Parameter setting is listed as C-F

Overall, the location of clustering in the process seems to make little difference in

terms of feature selection. The big trade off would then be in execution time, with

the outer clustering performing much faster. However, providing outsider information

to the bootstraps in this manner seems to violate the premise of using bootstraps to

learn about the behavior population.

The three characterization experiments demonstrate a proof-of-concept for an in-

stantiation of the framework we propose. The system correctly indicates when behav-

iors are the same and when they differ. In addition, they highlight the importance

of similar data conditions between behavior sources and the art of developing an ap-

propriate behavior representation. These findings pave the way for many avenues of

future research.

49



V. Conclusions

Both the behavior representation and the framework proposed and evaluated

throughout this research has far reaching implications and potential impact. The

kinematic feature representation, as explained in Section 3.2.4, adapts to, and al-

lows the, capture of many more behaviors. This helps out analysts and increases

the ability to map patterns of life, the application of machine learning to identify

and classify patterns, and detect abnormalities in observed human behavior [53]. In

addition, patterns of life are based on human interaction with each other and their

environment.

In direct application, the innovative framework provides an objective data driven

approach to validating desired behaviors of agents. This leads to better and more

realistic simulations, agents, games, robots, and training which in turn increases

critical skill transfer in a safer and more cost effective manner. The framework,

domain independent, could adapt to almost any community and be used in behavior

recognition/matching. This behavior correctness measure or behavior classification

can be used in agent decisions, and to try and prevent further bad tendencies or

developments when behavior symptoms are recognized.

5.1 System Characterization

Each experiment run affirms the ability to capture a behavior representation

through kinematic features within the specific scenario. Our proof-of-concept imple-

mentation of the framework performs exceedingly well for the baseline experiment.

This proves the ability to work within the domain. The results also support both

of the target goals. The behavior difference test clearly demonstrates the ability to

correctly distinguish when a behavior is similar, but too different to be considered the

50



same. This test proves slightly less resilient to parameter variation but not severely

so.

The cluster assignment/feature selection experiments demonstrate, as expected,

that the cluster assignment does in fact add value. Other features are quite consis-

tently chosen at each parameter setting.

5.2 Data Quality

The qualities of the standard and model data sets have a large impact on the

applicability and correctness of the output performance measure. It is essential to

have the standard data accurately embody the desired behavior. If not, the rest

builds on a poor foundation. Quality refers to accurate feature measurements a high

degree of matching across factors (e.g. demographic, environment, scenario, exhibited

behaviors), and minimal feature bias.

As discussed in Section 3.3, the notional premise builds off of assumptions of

similar accuracy on similar distributions. However, outside factors such as the envi-

ronment and scenario setup could change the overall accuracy despite the behaviors

being the same/similar.

The proposed framework requires quality data, but remains domain and data

independent. The proof-of-concept experiments use a single source, but typical use

of the described framework compares separate and independent sources. The model

and standard sets may be from the same or different domains entirely. Domains of

interest include agent or robot behavior compared to desired real world behavior (e.g.

human, animal, traffic, and network) among others.

The scenario in the proof-of-concept experiments biases features associated with

North and West movement as the end location requires the agent to travel in a

North-West direction from the start. Use of the source for both standard and model

51



mitigated the problem as both data sets exhibit this behavior bias. Users must be

aware of such potential biases with the standard data set.

Data points in both sets are expected to have the same format and be derived

from the same types of constraints. This includes the length and area of localization

(window size), same features, and a sufficient number of data points.

5.3 Future Work

5.3.1 Selecting Better Features.

The features tracked and generated from the source data characterize the behavior.

Poor or mis-representative features provide a bad characterization of the behavior.

Therefore, accurate and meaningful comparisons of behaviors depend heavily on the

features initially generated and later selected.

Further exploration in this area includes: 1) Which features does a human observer

actually base a decision on when determining the behavioral believability of an agent?

2) Which features do human analysts use to differentiate human behavior classes (e.g.

civilian or foe for Predator feed video intelligence analysis)? The answers to these

questions would provide further insight for both feature generation and selection.

The feature vector generated suffers from the “curse of dimensionality” [16]. Elim-

ination or combination of near duplicate features such as total change in North po-

sition (11), total move count North (14), average change in North (25), percent of

moves North (31), and percent of samples North move (39) helps alleviate the high

data sample demand. Adding features like velocity and body position, (e.g. crouch,

prone, standing) could replace one or more features and possibly provide more dis-

tinctive information about behaviors of interest. Further analysis of the orthogonality

of features, their independence, and seperabiltiy could provide additional behavior in-

formation and increase performance.

52



5.3.2 Generating Better Data.

The VBS2 VTK manual describes the behavior (includes path planning) of the

Safe and Careless classes as being similar [29]. A direct comparison of these behav-

iors would further test the ability of the system to accurately distinguish between

behavior distributions. This requires some planning with the setup of data sets and

the modification of class ID for one of the two behaviors.

Additional independent source data sets could provide another typical use case of

the framework. Comparison to a new VBS2 scenario with the same behaviors gives

insight to the effects of the environment and possible limitations of the system and

source data. Varied start and end locations in all cardinal directions with opposing

forces in the center would eliminate bias present in the current source data. This

should give a more accurate representation of the actual behavior and their differences.

Performance of the same experiments with the new scenario data gives a way to

further check the consistency of the results. Evaluation of the difference outputs is

expected to be approximately the same. These tests help verify the claim of the

independence of the system to data source.

A further application of the system would use both agent model data and tracked

data of real world human behavior. This directly supports efforts to create agents

which act more realistically human. The data of the human actions serves as the

standard data

5.3.3 Classification.

The current nearest mean classifier learns a center of the behavior class, but does

not take into account the spread. Prediction accuracy based on a measure of center

accurately distinguishes when the distributions are different by a significantly higher

or lower accuracy. However, this type of classifier remains susceptible to producing a

53



similar/same accuracy on populations with near centers, but different variance.

Claims of accepting two compared behaviors classes as the same, requires the

equivalent of higher order statistics. At a minimum, we care about the spread of the

distribution in addition to the center. Either replacement of the current classifier with

one which innately factors in variance or supplementing the classifier with variance

estimations such as within and between class scatter could address this concern. Holz

and Loew propose a nonparametric form of scatter matrices generalized to the multi

class case [25].

A stronger and more robust claim of similarity requires moment(s) of even higher

order. Variance does not account for data skewed from the mean or peaked distri-

butions. These require skew and kurtosis parameters. Higher orders increase the

computational time and complexity. The trade off between more fully describing/-

capturing the distribution and computational costs would need to be explored and

necessitate balance for the particular problem.

A confusion matrix permits further analysis, indicating which classes get confused

for each other. This information helps understand the performance of the classifier

and will provide insight back to the real world, where an analyst more likely misclas-

sifies if only tracking certain features.

The example confusion matrix in Table 6 shows a case with three classes 10

samples each. The system has a hard time distinguishing between class one and

two, with class three separable from the others. The totals and cell numbers enable

the calculation of the percent accuracy for each class and the percent misclassified as

a specific class. This reveals insight about the relationship between multiple different

behaviors, but not the correctness of matching a behavior.

54



Table 6. Example Confusion Matrix

Class 1 Class 2 Class 3 Total:
Class 1 7 3 0 10
Class 2 3 5 1 9
Class 3 0 2 9 11
Total: 10 10 10 30

5.3.4 Feature Selection.

The feature selection method we chose uses Euclidean distance as a filter method

to rank the features. Comparison of this method to alternate search strategies and

heuristics in terms of feedback on the best feature subset for classification may be

useful. The Bhattacharyya Coefficient (BC) measures the independent separability of

features [8]. Simple aggregation from multiple methods confirms important features.

Global search algorithms search over the set of all possible feature subsets. The

power set (2n, where n represents the number of features) determines the size of the

search space. The exponential growth in size causes many cases to be exhaustively

unsearchable. This necessitates an approximation to the optimal solution. However,

an extended search will require extensive computation time. Better feature selection

does not increase the performance measure, but may give better feedback to humans

on distinct features.

55



Appendices

56



Appendix A. Overview of Sample Standard Validation

Techniques

Table 7 below provides a overview of some typical validation techniques used.

This table is provided in [28] along with a fuller description of each in the text.

Table 7. Summary of Validation Techniques

Technique Applicability to
Legacy/New

Relative Cost
(L, M, H)

Suitability

Face Validation New (Early Stages) Moderate Subjective. Inconsistent
and insufficient for full
validation. Use for prelim-
inary approach only.

Trace Validation New High Use for discrete event sim-
ulation. Powerful. Very
objective.

Bottom-Up Testing New High Use for high fidelity, safety
critical systems. Objec-
tive but very complex.
Requires extensive test-
ing.

Multistage Valida-
tion

Legacy or New High Difficult with legacy sys-
tems. This is the basic ap-
proach to validation.

Internal Validation Legacy or New Low Applicable to stochastic
models. Provides variabil-
ity matching.

Sensitivity Analysis Legacy or New Moderate Analyzes model perfor-
mance based on input pa-
rameter manipulation.

Model comparison Legacy or New Moderate Use when similar vali-
dated models exist. Will
not detect common errors.

Interface Testing Legacy or New High Difficult with legacy mod-
els. Tedious but neces-
sary.

Graphic Compar-
isons

Legacy or New Low Subjective but practical
and quick.

Turing Test Legacy or New Moderate Based on expert (SME)
knowledge of output data.
Subjective.

57



Appendix B. VBS2 Agent Combat Stance Behaviors

The following information is from the Virtual Battle Space 2 Virtual Training Kit

(VBS2 VTK) Manual [29].

Behavior - Behavior defines the manner in which a group moves from one point

to another. Combat mode overrides all other movement setting (ie Combat Mode,

Formation and Speed). Available settings are:

1. Careless: Careless behavior will cause the group to move and behave in a very

non-combat manner. The group will form into a Compact Column like forma-

tion, where each unit will directly follow the man in front rather than the group

leader. Soldiers will carry their weapons in safe position (rifles across body,

pistols holstered) and walk slowly. Infantry will not fire on enemy targets (un-

less they are shot at), but vehicles will still fire on enemies when encountered.

Groups in careless mode do not switch to a more alert mode if enemies are

encountered. All units show preference moving along roads whenever possible.

2. Safe: Similar to Careless, except the group will change behavior to Aware upon

detecting an enemy unit.

3. Aware: This is the default behavior mode. The group will move at moderate

speed, with soldiers generally standing upright and making some occasional

efforts to use cover when available. Most units will still prefer to travel along

roads and travel in convoy irrespective of formation type. Tracked vehicles

will not use headlights, and will drive across any surface with no preference

to staying on roads. Helicopters will not use searchlights. When enemies are

known to be in the area, troops will disembark from any of their groups wheeled

transport vehicles (trucks, cars), and the group will move while carrying out

bounding maneuvers, making stronger use of available cover.

58



4. Combat: This behavior mode will result in a much higher combat performance

than Aware. Infantry groups will always move using bounding maneuvers, and

will normally keep crouched or prone unless moving. They will make some use

of available cover, choosing to spend some time crawling when in cover. They

will occasionally send out one unit ahead of the group as a scout. No vehicles

will use headlights at night. If enemy units are known to be in the area, infantry

groups will move is a more cautious manner.

5. Stealth: Stealth mode will cause a group to behave in a more cautious manner.

Infantry groups will move via cover whenever possible, spending much of their

time crawling. When they need to cross open ground, they appear to occasion-

ally choose to send scouts running ahead to reach the cover ahead as quickly

as possible. A stealthy infantry formation can tend to end up quite fractured.

Wheeled vehicles will still follow roads if available, but no longer convoy. If en-

emy units are known to be in the area, infantry groups will move more closely

together and spend more time prone.

59



Appendix C. Alternate Preliminary Experiment

We perform an additional preliminary experiment along with the baseline ex-

periment. We use the exact same framework parameter settings as in the baseline

experiment. These are shown in Tables 3 and 4 in Section 3.4.1. A minor logging

issue (buffers not always flushed to write output) prevents the results from being as

full as that of the baseline, resulting in a number of parameter settings only having

just a portion of the normal 200 bootstrap samples. However, the results still provide

some insight into the expected performance of the system.

This experiment display greater variance between confidence intervals of popula-

tion iterations within a class. Figure 14 gives a sample set of confidence intervals with

two non-covers (a confidence interval which does not encompass zero). Figure 15 fur-

ther shows the trend of this experiment to exhibit a greater number of non-covering

confidence intervals. The expected non-cover rate (α ∗ P ) depicts the level of non-

cover attributable to chance. Values above indicate a shift in confidence intervals

above or below zero which indicates a disparity in accuracy between the standard

and behavior under test data sets. We interpret consistent differences in accuracy

as indication of different behavior.

The percent of non-covers across classes compared among parameter settings pro-

vides insight into possible good settings. We show this juxtaposition in Figure 16.

The bowl shape indicates a cluster value of 6 and feature selection values around

10 and 15 to perform relatively well. We made use of this information in further

experiments.

60



Figure 14. A set of confidence intervals from the alternate baseline study. Parameter
setting is listed as C-F

Figure 15. The average percent of confidence intervals that do not cover 0 for each
class, across all parameter settings, in the alternate baseline study. The expected rate
is calculated by (α ∗ P ).

61



Figure 16. The average percent of confidence intervals that do not cover 0 for each
parameter setting, across the classes, in the alternate baseline study.

62



Bibliography

[1] Agent Behaviour Simulator (ABS): A Platform for Urban Behaviour Devel-
opment, 2001. URL http://www.cs.ucy.ac.cy/~{}yiorgos/publications/

behaviour_gtec01.pdf.

[2] “Department of Defense Directive (DoDD) 5000.1: Defense Acquisi-
tion System”. Alexandria, VA: Department of Defense, 2001. URL
http://web2.deskbook.osd.mil/htmlfiles/rlframe/REFLIB_Frame.asp?

TOC=/htmlfiles/TOC/061ddtoc.asp?sNode=L46&Exp=N&Doc=/reflib/mdod/

061dd/061dddoc.htm&BMK=T16.

[3] “Red Flag”. Website, 05 2006. URL http://www.globalsecurity.org/

military/ops/red-flag.htm.

[4] Random House Dictionary. Random House, Inc, 2011. URL http://

dictionary.reference.com/browse/behavior.

[5] Abbott, Robert. “Behavioral Cloning for Simulator Validation”. Ubbo Visser,
Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert (editors), RoboCup 2007:
Robot Soccer World Cup XI, volume 5001 of Lecture Notes in Computer Science,
329–336. Springer Berlin / Heidelberg, 2008. URL http://dx.doi.org/10.

1007/978-3-540-68847-1_32.

[6] Balci, O. “How to Assess the Acceptability and Credibility of Simulation Re-
sults”. Winter Simulation Conference, 62–71. 1989.

[7] Berry, Dianne C., Laurie T. Butler, and Fiorella de Rosis. “Evalu-
ating a realistic agent in an advice-giving task”. International Jour-
nal of Human-Computer Studies, 63(3):304 – 327, 2005. ISSN 1071-5819.
URL http://www.sciencedirect.com/science/article/B6WGR-4G94J3F-1/

2/237060445287e7558af4972e9c2f9add.

[8] Bhattacharyya, A. “On a measure of divergence between two statistical popula-
tions defined by probability distributions”. Bull. Calcutta Math. Soc, 35:99–109,
1943.

[9] Bosse, Tibor, Dung N. Lam, and K. Suzanne Barber. “Automated analysis
and verification of agent behavior”. Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, AAMAS ’06, 1317–
1319. ACM, New York, NY, USA, 2006. ISBN 1-59593-303-4. URL http:

//doi.acm.org/10.1145/1160633.1160876.

[10] Bratko, I., T. Urbancic, and C. Sammut. “Machine Learning and Data Mining:
Methods and Applications”. Behavioural Cloning of Control Skill. John Wiley
& Sons Ltd., 1997.

63

http://www.cs.ucy.ac.cy/~{}yiorgos/publications/behaviour_gtec01.pdf
http://www.cs.ucy.ac.cy/~{}yiorgos/publications/behaviour_gtec01.pdf
http://web2.deskbook.osd.mil/htmlfiles/ rlframe/REFLIB_Frame.asp?TOC=/htmlfiles/TOC/061ddtoc.asp?sNode=L46&Exp=N&Doc=/reflib/mdod/061dd/061dddoc.htm&BMK=T16.
http://web2.deskbook.osd.mil/htmlfiles/ rlframe/REFLIB_Frame.asp?TOC=/htmlfiles/TOC/061ddtoc.asp?sNode=L46&Exp=N&Doc=/reflib/mdod/061dd/061dddoc.htm&BMK=T16.
http://web2.deskbook.osd.mil/htmlfiles/ rlframe/REFLIB_Frame.asp?TOC=/htmlfiles/TOC/061ddtoc.asp?sNode=L46&Exp=N&Doc=/reflib/mdod/061dd/061dddoc.htm&BMK=T16.
http://www.globalsecurity.org/military/ops/red-flag.htm
http://www.globalsecurity.org/military/ops/red-flag.htm
http://dictionary.reference.com/browse/behavior
http://dictionary.reference.com/browse/behavior
http://dx.doi.org/10.1007/978-3-540-68847-1_32
http://dx.doi.org/10.1007/978-3-540-68847-1_32
http://www.sciencedirect.com/science/article/B6WGR-4G94J3F-1/2/237060445287e7558af4972e9c2f9add
http://www.sciencedirect.com/science/article/B6WGR-4G94J3F-1/2/237060445287e7558af4972e9c2f9add
http://doi.acm.org/10.1145/1160633.1160876
http://doi.acm.org/10.1145/1160633.1160876


[11] Braun, Adriana, Soraia R. Musse, Luiz P. L. de Oliveira, and Bardo E. J. Bod-
mann. “Modeling Individual Behaviors in Crowd Simulation”. Computer Ani-
mation and Social Agents, International Conference on, 0:143–148, 2003. ISSN
1087-4844. URL http://dx.doi.org/10.1109/CASA.2003.1199317.

[12] Brogan, David C. and Jessica K. Hodgins. “Group Behaviors for Systems with
Significant Dynamics”. Auton. Robots, 4(1):137–153, 1997. ISSN 0929-5593.

[13] Cares, J.R. “Agent modeling: the use of agent-based models in military concept
development”. WSC, 935–939. S, 2002.

[14] Clarke, E.M., O. Grumberg, and D.A. Peled. “Model checking”. MIT Press,
2000.

[15] Downes-Martin, S. A survey of human behavior representation activities for dis-
tributed interactive simulation. Client report, Defense Modeling and Simulation
Office, Alexandria, VA, 1995.

[16] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley, 2 edition, November 2001. ISBN 0471056693. URL http://www.amazon.

com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471056693.

[17] Efron, Bradley and R. J. Tibshirani. An Introduction to the Boot-
strap. Chapman and Hall/CRC, 1 edition, May 1994. ISBN
0412042312. URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20\&path=ASIN/0412042312.

[18] Fraser, N. M. “Quality standards for spoken dialogue systems: a report on
progress in EAGLES.” ESCA Workshop on Spoken Dialogue Systems Visgo,
Denmark, 1995.

[19] Gass, S. I. and L. Joel. “Concepts of Model Confidence”. Computers and Oper-
ations Research, 8(4):341–346, 1987.

[20] Goerger, Simon R. Validating Computational Human Behavior Models: consis-
tency and Accuracy Issues. Ph.D. thesis, Naval Post Graduate School, 2004.

[21] Goerger, Simon R., Michael L. McGinnis, and Rudolph P. Darken. “A Validation
Methodology for Human Behavior Representation Models”, 1998. URL http:

//handle.dtic.mil/100.2/ADA433696.

[22] Groom, Victoria, Clifford Nass, Tina Chen, Alexia Nielsen, James K. Scarbor-
ough, and Erica Robles. “Evaluating the effects of behavioral realism in embodied
agents”. Int. J. Hum.-Comput. Stud., 67:842–849, October 2009. ISSN 1071-
5819. URL http://portal.acm.org/citation.cfm?id=1613339.1613513.

64

http://dx.doi.org/10.1109/CASA.2003.1199317
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471056693
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0471056693
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0412042312
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0412042312
http://handle.dtic.mil/100.2/ADA433696
http://handle.dtic.mil/100.2/ADA433696
http://portal.acm.org/citation.cfm?id=1613339.1613513


[23] Han, Kwun and Manuela Veloso. “Automated Robot Behavior Recognition
applied to robotic soccer”. IJCAI-99 Workshop on Team Behavior and Plan-
Recognition. Also appears in 9th International Symposium of Robotics Research
(ISSR-99). 1999.

[24] Heigeas, Laure, Annie Luciani, Joelle Thollot, and Nicolas Castagne. “A
physically-based particle model of emergent crowd behaviors”. Graphicon. 2003.
URL http://hal.archives-ouvertes.fr/hal-00484547/en/.

[25] Holz, Hilary J. and Murray H. Loew. “Multi-class classifier-independent fea-
ture analysis”. Pattern Recognition Letters, 18(11-13):1219 – 1224, 1997.
ISSN 0167-8655. URL http://www.sciencedirect.com/science/article/

B6V15-3YN8YKG-N/2/957d63c335b209a43d6bc88b371bc97b.

[26] Horowitz, D.L. “The deadly ethnic riot”. Berkeley: University of California
Press, 2001.

[27] Huan, Li and Yu Lei. “Toward Integrating Feature Selection Algorithms for
Classification and Clustering”. IEEE Transactions on Knowledge and Data En-
gineering, 17(4):491–502, April 2005.

[28] Illgen, John D., President David, W. Gledhill, and Vice President. “21 st Cen-
tury Verification and Validation Techniques for Synthetic Training Models and
Simulations, SimTecT 2001”, 2001.

[29] Interactive, Bohemia. VBS2 Editor Manual 1.02 : Offline Mission Editor Real-
Time Editor. Bohemia Interactive Australia Pty. Ltd., Australia, 2007.

[30] James W. Davis, Ohio State University, Dept. of Computer Science & Engineer-
ing. “OSU GIS data”.

[31] Johnson, R. A. Miller and Freund’s Probability and Statistics for Engineers.
Prentice Hall, Englewood Cliffs, N.J., 5 edition, 1994.

[32] Karen Sparck-Jones, Julia R. Galliers. Evaluating Natural Language Processing
Systems: An Analysis and Review. Springer, 1996.

[33] Kopp, Stefan, Lars Gesellensetter, Nicole C. Krmer, and Ipke Wachsmuth. “A
Conversational Agent as Museum Guide Design and Evaluation of a Real-World
Application”. Themis Panayiotopoulos, Jonathan Gratch, Ruth Aylett, Daniel
Ballin, Patrick Olivier, and Thomas Rist (editors), Intelligent Virtual Agents,
Lecture Notes in Computer Science, 329–343. Springer Berlin / Heidelberg, 2005.
URL http://dx.doi.org/10.1007/11550617_28.

[34] Kutner, Michael H., Chris J. Nachtsheim, and John Neter. Applied LInear Sta-
tistical models. McGraw-Hill/Irwin, 2004.

65

http://hal.archives-ouvertes.fr/hal-00484547/en/
http://www.sciencedirect.com/science/article/B6V15-3YN8YKG-N/2/957d63c335b209a43d6bc88b371bc97b
http://www.sciencedirect.com/science/article/B6V15-3YN8YKG-N/2/957d63c335b209a43d6bc88b371bc97b
http://dx.doi.org/10.1007/11550617_28


[35] Lee, Jehee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.
Pollard. “Interactive control of avatars animated with human motion data”.
ACM Trans. Graph., 21(3):491–500, 2002. ISSN 0730-0301. URL http://dx.

doi.org/10.1145/566654.566607.

[36] Lee, Jehee and Kang Hoon Lee. “Precomputing avatar behavior from human
motion data”. Graphical Models, 68(2):158 – 174, 2006. ISSN 1524-0703.
URL http://www.sciencedirect.com/science/article/B6WG3-4G9GNKV-1/

2/307523291f5779816e249d7a21f85db9. Special Issue on SCA 2004.

[37] MacQueen, J. B. “Some Methods for classification and Analysis of Multivariate
Observations”. Berkeley Symposium on Mathematical Statistics and Probability,
281–297. University of California Press, 1967.

[38] McPhail, C. and R.T. Wohlstein. “Individual and collective behaviors within
gatherings, demonstrations, and riots”. Annual Review of Sociology, 9:579–600,
1983.

[39] Musse, S. R. and D. Thalmann. “Hierarchical Model for Real Time Sim-
ulation of Virtual Human Crowds”. Visualization and Computer Graphics,
IEEE Transactions, 7(2):152–164, August 2001. ISSN 1077-2626. URL http:

//dx.doi.org/10.1109/2945.928167.

[40] Pelechano, N., J. M. Allbeck, and N. I. Badler. “Controlling individual agents
in high-density crowd simulation”. SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, 99–108. Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland, 2007. ISBN
9781595936244. URL http://portal.acm.org/citation.cfm?id=1272690.

1272705.

[41] Reynolds, Craig W. “Flocks, herds and schools: A distributed behavioral model”.
M. C. Stone (editor), Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, volume 21, 25–34. ACM, New York, NY, July
1987. ISBN 0-89791-227-6. URL http://graphics.stanford.edu/courses/

cs448-01-spring/papers/reynolds.pdf.

[42] Riley, Patrick. Classifying Adversarial Behaviors in a Dynamic, Inaccessi-
ble, Multi-Agent Environment. Technical report, School of Computer Science
Carnegie Mellon University, 1999.

[43] Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach
(3rd Edition). Prentice Hall, 3 edition, 12 2009. ISBN 9780136042594. URL
http://amazon.com/o/ASIN/0136042597/.

[44] Sargent, R. G. “Simulation and Model-Based Methodologies: An Integrative
View”. Simulation Model Validation, Oren, et al., 1984.

66

http://dx.doi.org/10.1145/566654.566607
http://dx.doi.org/10.1145/566654.566607
http://www.sciencedirect.com/science/article/B6WG3-4G9GNKV-1/2/307523291f5779816e249d7a21f85db9
http://www.sciencedirect.com/science/article/B6WG3-4G9GNKV-1/2/307523291f5779816e249d7a21f85db9
http://dx.doi.org/10.1109/2945.928167
http://dx.doi.org/10.1109/2945.928167
http://portal.acm.org/citation.cfm?id=1272690.1272705
http://portal.acm.org/citation.cfm?id=1272690.1272705
http://graphics.stanford.edu/courses/cs448-01-spring/papers/reynolds.pdf
http://graphics.stanford.edu/courses/cs448-01-spring/papers/reynolds.pdf
http://amazon.com/o/ASIN/0136042597/


[45] Sargent, Robert G. “Verification and Validation of Simulation Models”. Winter
Simulation Conference, volume 30th, 121–130. 1998.

[46] Schlesinger, et al. “Terminology for Model Credibility”. Simulation, 32:103–104,
1979.

[47] Shao, Wei and Demetri Terzopoulos. “Autonomous pedestrians”.
Graphical Models, 69(5-6):246 – 274, 2007. ISSN 1524-0703. URL
http://www.sciencedirect.com/science/article/B6WG3-4PXM6D4-1/2/

8bed6f37fa9122ecf43eca0b5a7054a4. Special Issue on SCA 2005.

[48] Silverman, Barry G. Human Performance Simulation. Elsevier, Amsterdam,
2004. URL http://works.bepress.com/barry_silverman/7.

[49] Silverman, Barry G., Gnana Bharathy, Kevin O’Brien, and Jason Cornwell. “Hu-
man behavior models for agents in simulators and games: part II: gamebot en-
gineering with PMFserv”. Presence: Teleoper. Virtual Environ., 15(2):163–185,
April 2006. ISSN 1054-7460. URL http://dx.doi.org/10.1162/pres.2006.

15.2.163.

[50] Silverman, Barry G., Michael Johns, Jason Cornwell, and Kevin O’Brien. “Hu-
man behavior models for agents in simulators and games: part I: enabling sci-
ence with PMFserv”. Presence: Teleoper. Virtual Environ., 15(2):139–162, April
2006. ISSN 1054-7460. URL http://dx.doi.org/10.1162/pres.2006.15.2.

139.

[51] Sloman, A. and B. Logan. “Building cognitively rich agents using the
SIM AGENT toolkit”. Communications of the ACM, 42(3):71–77, 1999.

[52] Smith, Jeff. “OGRIP LiDAR”. web. URL http://gis3.oit.ohio.gov/

geodata/.

[53] Sodemann, Angela, Anne Cybenko, John Duselis, and Rik Warren. “Pattern’s
of Life Workshop”, January 2010.

[54] Stone, B. “Serious gaming”. Defence Management Journal, 2005.

[55] Sung, Mankyu, Michael Gleicher, and Stephen Chenney. “Scalable behaviors
for crowd simulation”. Computer Graphics Forum, 23(3):519–528, 2004. ISSN
1467-8659. URL http://dx.doi.org/10.1111/j.1467-8659.2004.00783.x.

[56] Tecchia, Franco and Yiorgos Chrysanthou. “Real-time rendering of densely
populated urban environments”. In Proceedings of the Eurographics Work-
shop on Rendering Techniques 2000, volume 2, 83–88. 2000. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.5343.

67

http://www.sciencedirect.com/science/article/B6WG3-4PXM6D4-1/2/8bed6f37fa9122ecf43eca0b5a7054a4
http://www.sciencedirect.com/science/article/B6WG3-4PXM6D4-1/2/8bed6f37fa9122ecf43eca0b5a7054a4
http://works.bepress.com/barry_silverman/7
http://dx.doi.org/10.1162/pres.2006.15.2.163
http://dx.doi.org/10.1162/pres.2006.15.2.163
http://dx.doi.org/10.1162/pres.2006.15.2.139
http://dx.doi.org/10.1162/pres.2006.15.2.139
http://gis3.oit.ohio.gov/geodata/
http://gis3.oit.ohio.gov/geodata/
http://dx.doi.org/10.1111/j.1467-8659.2004.00783.x
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.5343
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.5343


[57] Thalmann, Daniel. “The Foundations to Build a Virtual Human Society”. IVA
’01: Proceedings of the Third International Workshop on Intelligent Virtual
Agents, 1–14. Springer-Verlag, London, UK, 2001. ISBN 3-540-42570-5.

[58] Thomas Abeel, Yvan Saeys, Yves Van de Peer. “Java-ML: A Machine Learning
Library”. Machine Learning Research, 10:931–934, 2009.

[59] Walker, M A, D J Litman, C A Kamm, and A Abella. “Evaluat-
ing spoken dialogue agents with PARADISE: Two case studies”. Com-
puter Speech & Language, 12(4):317 – 347, 1998. ISSN 0885-2308.
URL http://www.sciencedirect.com/science/article/B6WCW-45K166R-7/

2/3025ace5c28373838187d5b98f105575.

[60] Weisstein, E. W. “Monte Carlo Method”. Web. URL http://mathworld.

wolfram.com/MonteCarloMethod.html.

[61] Wunstel, Michael, Daniel Polani, Thomas Uthmann, and Jurgen Perl. “Behavior
Classification with Self-Organizing Maps”. RoboCup 2000: Robot Soccer World
Cup IV, 108–118. Springer-Verlag, London, UK, 2001. ISBN 3-540-42185-8. URL
http://portal.acm.org/citation.cfm?id=646585.698842.

68

http://www.sciencedirect.com/science/article/B6WCW-45K166R-7/2/3025ace5c28373838187d5b98f105575
http://www.sciencedirect.com/science/article/B6WCW-45K166R-7/2/3025ace5c28373838187d5b98f105575
http://mathworld.wolfram.com/MonteCarloMethod.html
http://mathworld.wolfram.com/MonteCarloMethod.html
http://portal.acm.org/citation.cfm?id=646585.698842


REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2011 Master’s Thesis Sep 2009 — Mar 2011

A FRAMEWORK FOR THE EVALUATION OF SIMULATED
BEHAVIOR PERFORMANCE

11G236

Christopher M. Cooper, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/11-02

Dr. John Duselis
Program Manager - Anticipate and Influence Behavior Division
John.Duselis@WPAFB.af.mil
Air Force Research Labs, 711th Human Performance Wing
Bldg 248, 2255 H Street
WPAFB, OH 45433-7022

AFRL/711 HPW/RHXB

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

Recent development in video games, simulation, training, and robotics has seen a push for greater visual and behavioral
realism. As the reliance on high fidelity models in the education, training, and simulation communities to provide
information used for strategic and tactical decisions rises, the importance of accuracy and credibility of simulated
behavior increases. Credibility is typically established through verification and validation techniques.
Increased interest exists in bringing behavior realism to the same level as the visual. Thus far validation process for
behavioral models is unclear. With real world behavior a major goal, this research investigates the validation problem
and provides a process for quantifying behavioral correctness. We design a representation of behavior based on kinematic
features capturable from persistent sensors and develop a domain independent classification framework for the measuring
of behavior replication. We demonstrate functionality through correct behavior comparison and evaluation of sample
simulated behaviors.

U U U UU 79

Brett Borghetti, Lt Col, USAF (ENG)

(937)255-3636 x 4612; brett.borghetti@afit.edu


	AFIT-CGE-ENG-11-02.pdf
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Overview
	Problem Statement
	Approach
	Thesis Organization

	Related Work to Measuring Simulated Behavior Correctness
	Domain Mapping
	Towards Behavior Realism
	Verification & Validation
	Definitions
	Validation Process
	Measures of Performance
	Models in Application

	Summary of Related Work

	Methodology of Behavior Representation and Framework Design
	Problem Development
	Application Scenario
	Data Partitioning
	Agent Behaviors
	Data Source
	Features Representation

	Solution Approach
	Framework
	Evaluation System Components
	Learning and Performance Evaluation Phases
	System Performance Evaluation

	Design of Experiments
	Baseline Establishment
	Behavior Difference Detection
	Clustering Assignment


	Experimental Results and Analysis of the Behavior Correctness Framework
	Baseline Experiment
	Behavior Difference Experiment
	Feature Selection Experiment

	Conclusions
	System Characterization
	Data Quality
	Future Work
	Selecting Better Features
	Generating Better Data
	Classification
	Feature Selection


	Appendices
	Overview of Sample Standard Validation Techniques
	VBS2 Agent Combat Stance Behaviors
	Alternate Preliminary Experiment
	Bibliography


